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Chaplygin in [ 1 I generalized the area theorem and derived the appropri- 
ate integrals. The possibility of generalizing the results, in the 
Chaplygin sense, was also indicated. The most typical generalized area 
integrals are given in Sections 1, 2. 4 of [ 1 1. 

Without dealing with all the generalizations which follow from [ 1 1 ) 
one can still show that the given integrals are in essence integrals of 
cyclic displacements according to Chetaev [ 2 1. 

We retain the notation and the definitions adopted by Chaplygin. 

Regarding Section I of [l 1. The properties of constraints which are 
imposed on a system are revealed by means of those possible displacements 
which consist of the rotation of a system of mass points, without alter- 
ing their configuration, about a straight line AZ. 

Let the angle 68 represent the rotation. 

The position of the mechanical system can be determined by Poincare- 
Chetaev dependent variables 

a, P 7 Pk , 9 ,’ z’, ?/‘, z’ (i, k = 1, 2) (1) 

where pik are the cosines of the angles between the Azyx-system and the 
newly introduced rectangular system Ax’y’z’; whose z’-axis coincides with 
the straight line AZ, and the system rotates about this axis through 
angle 68. The lower subscript relates to the x, y, z-axes, the super- 
script to the x’, y', z’-axes. 

The variables Pik satisfy the following equations: 

(i, k = 1, 2) (2) 
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Real displacements are determined by the independent variables vi for 
which we can take 

da df3 dy dQ -- - 
dt ' dt ' clt' dt ’ qv (v = 5, 6, . . .) 

Here qV is a part of the velocity component of the mass points in the 
moving coordinate system X’Y’Z’ on these axes, or appropriately chosen 
independent variables representing the motion of the mechanical system 
in this coordinate system. A change in the arbitrary function f due to 
variables (1) for a given possible displacement can be determined by 

The parameters of possible displacements are 

The operators for the respective displacements are 

a &=p d a x”=ap, X3=?&’ x4=&:-&-s+. x, (v=5. 6 . ..) 
i=l 1 1 

For the parameters s of possible displacements one can take infinite- 

ly small changes in the relative coordinates of the mass points in the 
X’Y’Z’ -system. 

Then the form of the operators XV, similar to Xi(i = 1, 2, 3), iecomes 
obvious. The operators Xv are independent of variables a. p, y, pi and 
constitute a sub-group of relative displacements. All possible displace- 
ments constitute an Abel group. 

With corresponding [or appropriate] constraints it is possible to 
choose the parameters o,, so that the number of them is no less than the 
total number of relative coordinates. This should be borne in mind in all 

the sections. 

From the expression for the kinetic energy T of the system it is 

evident that 

Xr (T) = 0 

The forces applied to the system are such that the points of applica- 
tion of two derived forces can be chosen independently of Pik. We then 
have 

x4 ( U) = 0 

Displacement X4 is indeed a cyclic Chetaev displacement. The first 
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Chaplygin integral (2) from [ 1 1 corresponds to this displacement. 

ac- 5 const 
83, 

Regarding Section 2 of [ 1 I, As in Section 1, let the angle 68 repre- 
sent rotation of part I and 84 that of part II of the system. 

The position of the mechanical system can be determined from the de- 
pendent variables 

a, P, r, a’, P’ Y P! , I 11 at, Xl’, Yl’, Z*‘, m’, yz’, 22’ (3) 

where pi’, nik are cosines of the axes angles for parts I and II of the 

system, respectively, 21” yl’., ~1’~ x2’., ~2” z2’ are the relative co- 
ordinates of mass points in the corresponding systems of axes, as derived 
for Section 1. 

The variables Pik satisfy Equations (2), nik satisfy the same ones 

after replacing a:, $ by pik, 8. 

Possible displacements of the system will be determined by the rela- 

tions 

6q = kSf3, (k = L : L’) 

Real displacements are represented by the variables 

da df3 dy da’ dp’ dy’ do 
- - -3 
dt ’ dt ’ dt’ dt ’ dt 

-- 
dt ’ dt ’ rl” (v=tL 9. . ..) 

Quantities qV have the same significance as in Section 1 for parts I 
and II of the system. 

The rotations de/dt and dc$/ dt of these parts of the system are con- 
nected by the same expressions, as are the possible displacements 

-==?!I ‘4 
rlt clt 

A change in the arbitrary function f due to variables (3) over a 
possible displacement is 

8f=~wjXjf+zw”x”f 
j=l 

The parameters of possible displacements are 

a1 = fiu, w2 = Sf3, w3 = ly, wb = aa', w5 = S$', w6 = 6-f', 07 = SO, w, (~=a, 9. . ..) 

The operators for the respective displacements are 
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For parameters q, of possible displacements, infinitely small changes 
in mass point coordinates in the corresponding systems of axes can be 
taken. The form of operator X, is obvious. 
ent of variables a, @, y, a’, p’, y’, Pi’, 

Th;se operators are independ- 
ai , and they constitute a 

sub-group of relative displacements of the mechanical system. 

From the kinetic energy expression and potential function it is 
evident that 

X, (T + U) = 0 

Displacement X7 is a cyclic one in the sense of Chetaev. 

The first Chaplygin integral of [ 1 1 corresponds to this displacement 

S + kS’ = const 

These results can be easily extended to the system dealt with by 
Chaplygin in Section 3 of [ 1 I, 

Regarding Section 4 of [ 1 1, The results of this section have been 

further applied by the author [ 3 I ) in the sense that the given integral 
is found for different forces and constraints applied to the mechanical 
system. The cyclic displacements will therefore be found under these new 
conditions. The analysis is retained for the Chaplygin condition. 

Suppose the angle 68 represents the rotation of system I as in Section 
1, while to translation along straight line n of system II there cor- 
responds a displacement through distance 61, assuming invariance of 
systems I and II. 

We use the same notation as in Sections 1 and 2. 

The position of the mechanical system is determined by the dependent 
variables 

where x2, y2, z2 are mass point coordinates of system II in Axyz-coordi- 
nates. 

Possible system displacements are determined by relations 

61 = xse, x2 = a2 + b2 
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Let the parameters of the real displacements be 

da dp dy d9 - 
dt’ -&-’ dt’ dt’ Iv (v=5. 6. . . . ) 

The rotation of system I and translation of system II are connected 
by the same relations as the possible displacements 

dl d3 
z=xJj-, ~2 = a? f b2 

Variables pi’ satisfy Equations (2). while variables x2, y2. on the 

strength of (5), satisfy 

dxz 4/z de b dh 
--- 
dt - bg++, dt= dt a--+.-- 

x dt 

Here dh/dt is the rate of change of the projection, on the straight 
line AC, of the distance between A and a mass point of system II. 

The change in the position function of the system f in dependence on 
the variables (4) in a possible displacement is 

sj = i oj xj f + zo, is, f 
-. 
1=1 

The parameters of possible displacements are 

The operators of the corresponding displacements are 

For the parameters u,, of the possible displacements one can take in- 
finitely small changes in relative coordinates of mass points of system 
(I), as in Sections 1 and 2, and the projections of 6h on the straight 
line AC of the distance from A to mass points of system II. 

The form of the operators X,, for system I is obvious, while for system 
II it is 

These operators are independent of variables a, p, y, pi”, and con- 
stitute a sub-group of relative displacements of systems I and II. 
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The possible displacements form an Abel group. 

It follows from the kinetic energy and potential function expressions 
for the system 

X4 (T + U) = 0 

X, is a Chetaev cyclic function. The first Chaplygin integral (11) of 

l-1 I, or (5) from [ 3 1 , corresponds to 

aL = const, 
Q4 

The expressions obtained here are applicable to the possibilities of 
generalizing the area theorem pointed out by Chaplygin. 

Incidentally, we make one observation of Section 9 of [ 1 1, 

According to the area theorem, the derivatives of the sum of the 

moments of momentum of the motion of the envelope are written down as 
[ 1, P. 52 1 

& (J,p - Mac) = - UN,, -$ (J,y -+ Illau) = aN, 

This is inaccurate. The second equation should have been as follows: 

-& (J,q + Mau) = nN, + n.Wg sin cp 

Integrals obtained from this equation should be altered accordingly. 

Integration of the differential equations deduced by Chaplygin by 

quadratures, however, can only be carried out for the case $ = 0, i.e. 
when all the terms left out are eliminated. This reservation does not 
influence the final form of the formulas. 
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